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Abstract—A chieving highly dynamic humanoid parkour on un-
seen, complex terrains remains a challenge in robotics. Although
general locomotion policies demonstrate capabilities across broad
terrain distributions, they often struggle with arbitrary and
highly challenging environments. To overcome this limitation, we
propose a real-to-sim-to-real framework that leverages rapid test-
time training (TTT) on novel terrains, significantly enhancing the
robot’s capability to traverse extremely difficult geometries. We
adopt a two-stage end-to-end learning paradigm: a policy is first
pre-trained on diverse procedurally generated terrains, followed
by rapid fine-tuning on high-fidelity meshes reconstructed from
real-world captures. Specifically, we develop a feed-forward,
efficient, and high-fidelity geometry reconstruction pipeline using
RGB-D inputs, ensuring both speed and quality during test-time
training. We demonstrate that T77-Parkour empowers humanoid
robots to master complex obstacles, including wedges, stakes,
boxes, trapezoids, and narrow beams. The whole pipeline of
capturing, reconstructing, and test-time training requires less
than 10 minutes on most tested terrains. Extensive experiments
show that the policy after test-time training exhibits robust
zero-shot sim-to-real transfer capability. Project Page: https://ttt-
parkour.github.io.

I. INTRODUCTION

Recent advancements in deep reinforcement learning have
fundamentally revolutionized humanoid locomotion control,
enabling robots to demonstrate robust mobility in diverse
real-world environments [[15, 35| I55]. By leveraging massive
parallel simulation and sim-to-real transfer techniques [32,131]],
humanoid robots can now traverse unstructured terrains. Al-
though some general policies demonstrate capabilities across
broad terrain distributions, they struggle to traverse unseen and
complex obstacles. Bridging this gap to achieve true athletic
intelligence is critical for the deployment of humanoids in
challenging environments.

Although large-scale simulation training has improved the
capabilities of humanoid robots, relying solely on procedural
generation to create terrains has inherent limitations. Syn-
thetic terrains composed of simple geometric primitives often
fail to capture the vast spectrum of terrain typologies and
their complex spatial configurations in the real world. It is
impossible to exhaustively cover every potential environment
during pre-training. A policy trained on such constrained data
distributions inevitably suffers from the out-of-distribution
deployed in the real world. Thus, there is a critical need for a
paradigm that enables rapid adaptation at test time.

Moreover, manually reproducing realistic geometric features
in simulation is labor-intensive. While per-scene optimization
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Fig. 1: Rapid test-time training on unseen terrain. By re-
constructing the scene and fine-tuning in simulation, our
framework enables the robot to master challenging obstacles
within 10 minutes, turning failure (left) into success (right).

methods like NeRF [22} 153|147, 5] and 3DGS [29, 134, 48 24]]
excel in view synthesis and extend to physical interaction
[10L 154, [14], the overall workflow is often computation-
ally intensive and time-consuming, making it incompatible
with the rapid adaptation requirements of test-time training.
Conversely, feed-forward [42) 43| |44, 21] and generative
approaches [7]] are faster but often yield scale-ambiguous or
distorted geometries in some terrains, leaving them unsuitable
for physics simulation in our parkour settings. Thus, gener-
ating collision-accurate, simulation-ready meshes within the
tight time windows required for rapid adaptation remains a
critical bottleneck.

To address these challenges, we introduce TTT-Parkour,
a real-to-sim-to-real framework designed for rapid humanoid
adaptation on challenging terrains, including wedges, stakes,
boxes, trapezoids, and narrow beams. Our approach is built
upon a two-stage end-to-end perceptive locomotion learning
paradigm. We first pre-train a general policy on a diverse set of
procedurally generated terrains. Subsequently, we fine-tune the
policy on meshes reconstructed from real-world terrains. We
develop an efficient and high-fidelity geometry reconstruction
pipeline using RGB-D input. We employ a feed-forward
method with automatic scale recovery and frame alignment
to directly reconstruct simulation-ready meshes. This pipeline
enables test-time training of the policy on accurate geometric
constraints, significantly accelerating adaptation and mitigat-
ing the sim-to-real gap. Notably, our efficient and automated
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framework allows for rapid adaptation. It finishes the capture,
reconstruction, and test-time training phases within 10 minutes
for most tested terrains. This allows the robot to rapidly update
its policy, ensuring robust and agile parkour performance
even when encountering geometric irregularities that were
never seen during pre-training. Extensive experiments show
that both the pre-training stage with curriculum learning and
the test-time training stage with specific terrain are essential
for achieving robust performance on extremely challenging
terrains. In summary, our main contributions are as follows:

o We introduce a two-stage end-to-end perceptive loco-
motion learning paradigm consisting of pre-training and
rapid test-time training, both of which are essential for
traversing extremely challenging terrains.

o We develop a fast, feed-forward and high-fidelity ge-
ometry reconstruction pipeline to generate simulation-
ready mesh from RGB-D inputs, enabling an efficient
real-to-sim-to-real parkour workflow.

o Experiments demonstrate that agile and robust humanoid
parkour capabilities emerge rapidly on extremely chal-
lenging terrains, significantly surpassing baselines.

II. RELATED WORKS
A. Perceptive Locomotion

Integrating exteroceptive perception is crucial for agile lo-
comotion, enabling robots to transition from blind, reactive re-
covery [23l |18} [13]] to proactive obstacle traversal. Traditional
map-based approaches typically leverage LIDAR coupled with
precise localization to construct elevation maps [[15} 28} 41}, 135]]
or voxel grids [4]. However, these methods are susceptible
to state estimation drift and motion distortion during high-
dynamic parkour, making global maps unreliable on extremely
challenging terrains. Alternatively, recent works have explored
utilizing depth images for policy input [37,[38, 9], retaining in-
termediate heightmap representations. Following the paradigm
of [56, 18, 55, we employ a forward depth camera to train a
policy end-to-end. This approach is robust during high-speed
traversal. Furthermore, the higher frequency of depth cameras
compared to LiDARs makes them inherently more suitable
for tasks requiring precise foothold selection. However, most
learning-based approaches, including both heightmap-based
and end-to-end methods, remain limited to structured terrains
and often fail to generalize to unstructured, complex environ-
ments with extremely sparse footholds.

B. Fast Adaptation

Test-Time adaptation [45} |39} [3, 2] originates from classical
machine learning as a lightweight online fine-tuning paradigm
for mitigating out-of-distribution shifts during inference, and
has been extended in foundation models with gradient updates
[3, [1]. In robot learning, fast adaptation at test time has
been extensively explored in recent years: Diffusion-based
controllers [19, 127} 17] incorporate gradients of explicit reward
and cost functions as guidance at test time to optimize for de-
sired behavioral outcomes. While this class of methods offers
flexibility, the generated trajectories may be pulled away from

the in-distribution data manifold by gradient updates, resulting
in performance collapse. Others use generative models for test-
time adaptation to novel environments and embodiments [6].
To the best of our knowledge, we are the first to leverage
rapid test-time training paradigm to enable humanoid robots
to master unseen, complex terrains.

C. Scene Reconstruction

High-fidelity reconstruction is critical for enhancing sim-
ulation realism and bridging the sim-to-real gap. While per-
scene optimization methods like NeRF [22] 53| 147, 5] and
3DGS [29} 148, 34| 146, 149, 52| 24} 25| 26| excel in visual
synthesis, and recent extensions extract meshes for physical
interaction [10, 54} [14] 40], they fail to meet the automation
and efficiency requirements of test-time training (TTT). Their
reliance on offline, multi-stage processes (e.g., COLMAP or
iterative optimization) [54, 29] prevents rapid online adapta-
tion. Conversely, recent feed-forward techniques [42] 43 21]]
bypass optimization but suffer from scale ambiguity or exhibit
significant metric discrepancies. While RoLA [51] enables
manipulation learning from a single image, it is confined
to tabletop settings with small objects. In contrast, parkour
environments involve long-span terrains featuring complex
layouts and occlusions. Thus, the spatial layouts from single-
image generation [7] often contain severe geometric distor-
tions. Such geometric infidelities make the resulting meshes
unsuitable for parkour tasks. To address this, we introduce an
efficient pipeline integrating feed-forward reconstruction with
automatic scale and frame alignment, producing simulation-
ready meshes with the speed and fidelity required for test-time
parkour training.

III. METHOD
A. Problem Definition

We define the task as traversing a series of discrete plat-
forms P = {Pstart, P1, - - -, Pns Pend ; €levated above the ground
Geround. The robot aims to travel from pgr to Pena following
a fixed forward velocity command without an explicit angular
velocity command. To ensure valid traversal, contact with the
ground plane Ggroung 1 treated as a failure state, preventing the
robot from bypassing obstacles by moving on the ground. The
terrains consist of geometric primitives with limited contact
areas (e.g., wedges, stakes, boxes, trapezoids, and narrow
beams), requiring the policy to maintain stability through
precise foothold selection.

B. Policy Pre-training

We formulate the perceptive locomotion task as a Reinforce-
ment Learning (RL) problem and optimize the policy using
Proximal Policy Optimization (PPO) [36]. The policy employs
a CNN-based depth encoder to extract latent features, which
are then concatenated with proprioception and fed into an MLP
to predict the final actions.

Observations: The policy’s observation space is designed
to provide comprehensive state information for stable locomo-
tion. The actor’s observation of incorporates both propriocep-
tion data and visual perception. Specifically, the proprioception
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Fig. 2: TTT-Parkour. Our framework consists of three stages: (1) Pre-training: A general policy is pre-trained on diverse
procedurally generated terrains to learn robust locomotion primitives. (2) Test-time Training (TTT): We reconstruct high-
fidelity and simulation-ready meshes from real-world captures using feed-forward reconstruction with automatic scale recovery
and frame alignment. The policy is then rapidly fine-tuned on these specific terrains in simulation. (3) Sim-to-Real Deployment:
The adapted policy is directly deployed to the real-world humanoid robot for zero-shot traversal of complex unseen obstacles.

includes the base angular velocity w;, projected gravity vector
g, velocity commands c;, joint positions q;, joint velocities
q:, and the previous action a;_j. To handle partial observabil-
ity and capture motion dynamics, we employ a history sliding
window of length h. The final observation is a concatenation
of the proprioceptive history and the sequence of depth images
I e RWxH,

of = [pt—h+1:t7Ht] ) (D
where p: = (wt, 8¢, Ct, qt, qr, a:—1) denotes the propriocep-
tion vector at time t. We use strided windows for depth images
to get a long history.

Hy = {I,_¢|k=01,...,m—1}, )

During training, we inject stochastic noise into the actor’s
input to enhance robustness and bridge the sim-to-real gap.
We adopt an asymmetric actor-critic architecture. The critic
has access to privileged information, including noise-free state
and base linear velocity v; € R, to guide the learning process.
Actions: The policy outputs target joint positions a, € R??,
These are converted into joint torques 7, via a PD controller:

Ty = kp(a; — qr) — kady. 3)

where the gains k, and k, are adopted from [27].

Terminations: The training episode terminates if any of
the following conditions are met: (1) The robot is stuck at
the starting position for more than 4 seconds; (2) Any body
link contacts the ground; (3) The base orientation exceeds the
permissible thresholds.

Rewards: The reward function comprises task 7, regular-
ization 7reg, safety 7gp, and AMP ravp terms. We formulate
the task as goal position tracking, where the target velocity
is derived from the goal vector and clipped to a maximum
value to prevent reward hacking (e.g., turning around at the
start). Notably, we do not provide angular commands; the
robot must autonomously decide its steering. We utilize a
dense velocity-tracking reward to regulate speed rather than
a sparse goal reward. Regularization terms penalize foothold
on terrain edges, energy consumption, and action rate to
prevent oscillations, while safety terms enforce joint limits.
Furthermore, we leverage Adversarial Motion Priors (AMP)
[33]) trained on MPC-generated datasets to encourage
natural and robust motion styles. See Appendix for details.

C. Efficient Geometry Reconstruction

To facilitate rapid test-time training to unseen terrains,
we introduce an efficient, automated, and high-fidelity recon-
struction pipeline that integrates feed-forward reconstruction
with automatic scale recovery and frame alignment, shown
in Formally, we define the reconstruction problem
as transforming raw real-world captures P;.,, into simulation-
ready mesh M that is strictly aligned with both the gravity
axis g and the start-to-goal traversal direction d.

Feed-forward Terrain Reconstruction: We initiate the
reconstruction process by employing a feed-forward model
that takes RGB sequences as input to reconstruct a
scale-ambiguous point cloud. Subsequently, we apply screened
poisson surface reconstruction [20] to recover the mesh.

Scale Recovery: Existing rgb-only and metric feed-forward
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Fig. 3: Efficient Geometry reconstruction. Our pipeline consists of four stages: (1) Real-World Capture. (2) Feed-forward
Reconstruction provides initial scene geometry from RGB sequences. (3) Scale Recovery corrects metric scale discrepancies
by aligning inferred depth with sensor depth. (4) Physically-consistent Frame Alignment registers the terrain to the simulation
coordinate system by aligning the z-axis with gravity and the z-axis with the traversal direction using 3D semantic segmentation.

approaches [43] 21]] are unreliable for predicting precise ab-
solute scale on some terrains, as shown in This
ambiguity is critical because standard scale randomization
(e.g., s € [0.9,1.1)) is insufficient to compensate for arbitrary
scale biases on unseen terrains. For instance, if the scale is
significantly under-estimated on geometry-constrained terrains
like stakes or narrow beams, the effective contact area in the
simulator will become infeasibly small. This makes the task
physically intractable, preventing policy convergence.

To ensure precise alignment, we calculate a scaling factor
by aligning the predicted depth from the feed-forward model
to the metric depth from the RGB-D camera. Specifically,
we compute the ratio of median depth values derived from
the lower half of the depth images. This region-of-interest
selection effectively focuses on the terrain while mitigating
interference from distant background outliers. This alignment
step is essential, as it minimizes the sim-to-real gap and
ensures that any residual scale deviation falls within the
tractable bounds of standard domain randomization.

Coordinate System Alignment: Given the scaled point
cloud and reconstructed mesh, our goal is to register the terrain
into a physically consistent world frame. In this frame, the
origin is anchored at the centroid of the start platform pggy,
while the z-axis and x-axis are aligned with the gravity and
the intended traversal direction, respectively.

We assume the physical ground plane is orthogonal to the
gravity vector. To estimate this plane robustly, we first utilize
a 3D segmentation model [50] to extract points semantically
labeled as ground. We apply RANSAC [11]] to robustly filter
outliers from the segmented ground points, followed by PCA
to precisely estimate the surface normal n. The entire scene
is then rotated to align n with the z-axis in simulation.

To align the traversal direction, we identify the centroids of
the starting (psiar) and ending (peng) platforms derived from
the semantic segmentation. The scene is then rotated around
the z-axis such that the vector connecting these centroids
aligns with the z-axis in simulation. This alignment ensures
that the robot’s forward velocity command in simulation is
geometrically consistent with the physical terrain layout.

D. Policy Rapid Test-time Training

Following pre-training, we perform rapid test-time training
on specific target terrains, leveraging simulation-ready meshes
derived from our reconstruction pipeline. Crucially, we main-
tain the same Markov Decision Process (MDP) formulation
used during pre-training, preserving the same observation
space, action space, termination criteria, and reward functions.
Building upon the pre-trained policy, we investigate four
distinct fine-tuning strategies.

(1) Full Fine-tuning: Updates all parameters of the policy
network end-to-end, starting directly from the pre-trained
checkpoint.

(2) Adapter Modules: Inserts lightweight adapters after each
layer of the depth encoder and MLP. We freeze the original
weights and optimize only the adapter modules. Crucially,
adapter outputs are zero-initialized to preserve the original
feature modulation at the start.

(3) Residual Learning: Adds a parallel network to learn an
additive action correction (iptq; = Apase + Ares). The base
policy is frozen, and the residual output layer is zero-initialized
so that starts at zero, effectively maintaining the original policy
behavior initially.

(4) Last Layer Fine-tuning: Freezes the depth encoder and
intermediate MLP layers, restricting updates exclusively to the
final linear layer of the actor policy.

IV. EXPERIMENTS

In this section, we conduct a comprehensive evaluation
of the TTT-Parkour framework in both simulation and real-
world scenarios. We deploy the policy to a suite of extremely
challenging terrains designed to push the limits of humanoid
locomotion, including wedges, stakes, boxes, trapezoids, and
narrow beams. We try to answer the following key questions:
Q1. Necessity & Efficiency: Are both pre-training and rapid
test-time training essential for enabling agile locomotion on
unseen, extremely challenging terrains, and is the process
sufficiently efficient for practical deployment?

Q2. Ablation of Strategies: How do different fine-tuning
strategies compare in terms of performance and stability?



Fig. 4: Real-world experiments. The robot successfully traverses extremely challenging terrains, including: (a) Wedges, (b)
Stakes, (c) Boxes, (d) Trapezoids, (¢) Narrow beam, and (f) Mixed terrain. See videos for more.

Q3. Reconstruction Quality & Speed: How does reconstruc-
tion fidelity and speed vary across different data sources, and
is RGB-D necessary compared to RGB-only methods?

Q4. Convergence Analysis: What factors influence the sample
efficiency and the required number of iterations for the test-
time training process?

A. Experiment Configurations

1) Training Setup: We utilize IsaacLab [32]] powered by
IsaacSim for high-fidelity physics simulation and policy train-
ing. All experiments are conducted on a workstation equipped
with an NVIDIA RTX 5090 GPU, parallelized with 4096
humanoid robot agents, where each iteration takes less than
4 seconds. We leverage the NVIDIA Warp framework [30]
to implement a GPU-accelerated ray-caster depth simulation.
The robot employed is the Unitree G1 29Dof. We pre-train
the policy for 100,000 iterations, utilizing a history length of
h = 8 to capture temporal observations. Then we capture and
reconstruct the scene for test-time training.

2) Policy Deployment on Real Robot: We perform a zero-
shot transfer of the policy trained in simulation to the real
robot. The policy is deployed on the robot’s onboard NVIDIA

Jetson Orin NX computer using ROS2, with the inference loop
running at 50 Hz. For perception, we utilize the onboard Intel
RealSense D435i camera operating at 60 Hz. The raw depth
images are captured at a resolution of 480 x 270, downsampled
to 64 x 36, and subsequently cropped to a 32 x 18 patch
covering the center-bottom region to focus on the immediate
terrain geometry.

3) Tested Terrains: Our experiment focuses on five terrain
categories: wedges, stakes, boxes, trapezoids, and narrow
beams. Across all experimental setups, the start and end
platforms are constructed as large boxes measuring approxi-
mately 90 cm in length, 80 cm in width, and 35 cm in height.
All intermediate obstacles are arranged to require the robot
to traverse them without touching the ground. In the pre-
training stage, we employ procedural generation to create
diverse variations of these five categories in simulation. To
ensure robustness, we randomize the position, size, and shape
of each obstacle. The simulation environment is organized as
a 20 x 10 grid comprising 5 distinct terrain categories, with
each category occupying 4 columns. Within each column, the
10 rows follow a curriculum training strategy [16], where
difficulty progressively increases from the first to the last
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TABLE I: Simulation success rates across 13 terrains. We compare the Pre-train policy (trained on procedural terrains), the
Scratch-1 policy (trained from scratch on the single target terrain), the TTT-13 policy (fine-tuned simultaneously on all 13
terrains), and the TTT-1 policy (fine-tuned exclusively on the single target terrain).

Methods / Terrains Boxes Wedges Nar.1 Nar.2 Nar.3 Trap.1 Trap.2  Boston  Stakel Stake2 Stake3 Mix1 Mix2
Pre-train 98.6% 0.1% 81.2% 88.4% 65.6% 0.0% 7.4% 0.0% 4.4% 0.0% 9.9% 0.0% 0.1%
Scratch-1 (25k iters) 0.0% 0.0% 100.0%  100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TTT-13 (1k iters) 98.7% 100.0% 99.9% 100.0% 99.6%  100.0% 99.6% 73.6% 100.0% 100.0% 100.0%  99.9% 99.5%
TTT-1 (Converged) 100.0% 100.0% 100.0% 100.0% 99.4% 100.0% 100.0% 999% 100.0% 100.0% 100.0% 999% 100.0%
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Fig. 5: Success rate progression over test-time training (TTT-1) iterations. The policy rapidly converges to high performance

on previously unseen terrains.
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Fig. 6: Real-world success rates of Pre-train and TTT-1 Policy.

row. Specifically, difficulty is modulated by varying geometric
parameters: higher difficulty levels correspond to larger gaps
and smaller platform dimensions. Representative examples are
visualized on the left side of For the real-world
test-time training and deployment stage, we physically con-
struct 13 distinct testing terrains spanning the aforementioned
categories. Each terrain is characterized by randomized spatial
arrangements and orientations to strictly challenge the robot’s
adaptability on unseen geometries. Detailed specifications are
provided in the Appendix.

4) Evaluation Metrics: We adopt the success rate as the
primary metric for our experiments. In each trial, the robot
is initialized on the start platform and commanded with a
constant forward linear velocity and zero angular velocity. A
trial is recorded as a success if the robot successfully traverses
the terrain and reaches the end platform, without touching the
ground or falling down. To ensure statistical reliability, we
conduct 5 trials for each real-world experiment and 1,000 trials
for each simulation experiment.

B. Traversability Analysis

To determine the necessity and efficiency of test-time train-
ing, we conduct a comparative analysis against four baselines
in simulation. The methods are defined as follows:

(1) Pre-train: The base policy is trained on large-scale
procedurally generated terrains and deployed directly without

adaptation.

(2) Scratch-1: A policy trained from random initialization
directly on a single, specific reconstructed real-world terrain.
(3) TTT-13: A policy fine-tuned simultaneously on all 13
available reconstructed real-world terrains.

(4) TTT-1 (Ours): The proposed framework, which performs
rapid test-time fine-tuning on a single, specific reconstructed
mesh from a real-world environment.

We first conduct experiments in simulation. As illustrated
in the success rate improves rapidly compared to
the pre-trained baseline (iteration 0). The test-time training
converges to a high success rate on most terrains within
120 iterations, which corresponds to a total adaptation time
of approximately 10 minutes (combining the capturing and
reconstruction stages). Notably, the Boston terrain features a
circular arrangement of wedges, requiring complex turning
behaviors unlike the linear traversal of other terrains. Thus,
it requires more iterations for effective adaptation. Moreover,
we compare success rates across different policies in
revealing interesting insights:

(1) The pre-trained policy fails on most test terrains despite
their similarity to the procedural training set. This indicates
that the policy has limited zero-shot generalizability regarding
precise geometric differences in highly challenging scenarios.
After test-time training, the fine-tuned policies achieve high
success rates across all terrains, highlighting the necessity of
test-time adaptation.

(2) Training from scratch fails on most terrains, even after
extensive training on a single terrain (25k iterations). Success
is limited to only two narrow terrains without wide gaps. This
suggests that the curriculum strategy inherent in large-scale
pre-training is essential.

(3) TTT-13 slightly underperforms TTT-1. We attribute this
to the inherent challenges of multi-task optimization, where
gradient interference and reduced sampling density per task
hinder convergence.



TABLE II: Comparison of different sources for reconstruction. Time indicates duration from data capture to final mesh.

Methods RGB-D LiDAR Scanner iPhone Hand-crafted
Pros Balanced quality and efficiency  Professional, best scale accuracy =~ Most accessible, fast acquisition No artifacts
Cons Scale precision slightly lower Terrain junction artifacts, Unstable reconstruction results, ~ High manual effort, over-perfect
than LiDAR tedious post-processing flying point artifacts geometry causes sim-to-real gap
Time 2min 10s 20min 4min 1h
Ours (RGB-D) Hand-crafted

__ iPhone

Fig. 7: Geometry comparison. Our pipeline with RGB-D input balances quality and efficiency to reconstruct simulation-ready
meshes. It maintains realistic geometric fidelity with significantly fewer artifacts compared to LiDAR and iPhone scans, where
major artifacts are highlighted by red circles. Top row: Stakel, bottom row: Narrow]1.

TABLE III: Success rate in the real world using different
reconstruction sources.

Terrains / Methods RGB-D (Ours) LiDAR iPhone Hand-crafted
Stakel 80% 80% 0% 40%
Narrow1 80% 100% 80% 20%

In the real-world experiments, we deploy the pre-train pol-
icy and terrain-specific policy obtained via test-time training
(TTT-1) on each respective terrain. The success rates are
shown in As illustrated, the pre-trained general
policy struggles significantly with unseen geometries, failing
completely (0% success rate) on most of the challenging
obstacles such as Wedges, Trapezoids, and Stakes. In con-
trast, TTT-Parkour demonstrates robust adaptation capabilities,
increasing success rates from near zero to more than 60%
% on most complex terrains and achieving 100% on Boxes
and Wedges. This significant improvement validates that our
test-time training pipeline effectively empowers the robot’s
ability for diverse unseen environments. Some snapshots are
shown in Real-world success rates are slightly
lower than those in simulation. We attribute this sim-to-real
gap to hardware instabilities (e.g., camera noise, actuator
dynamics) and environmental mismatches. Unlike the static,
rigid simulation, physical terrain elements often wobble or
shift during robot interaction. These unmodeled dynamics can
lead to failure in real-world tests. Additionally, discrepancies
between the reconstructed geometry and the physical terrain
still persist, further contributing to the performance gap.

TABLE IV: Comparison of absolute relative scale error. We
achieve metric scale fidelity comparable to industrial LiDAR.

Terrains / Methods RGB-D (Ours) LiDAR iPhone MapAnything Pi3
Stakel 0.002 0.016 0.074 0.383 0.863
Narrow] 0.028 0.005 0.056 0.720 1.172

C. Mesh Reconstruction Analysis

As demonstrated in [Figure 7| and [Table 11} our geometry
reconstruction pipeline supports diverse input modalities. In
the experiments, we utilize a Realsense D435i for RGB-D
sensing, a Lixel K1 for LiDAR scanning, an iPhone 16 Pro (via
the 3D Scanner App) for mobile scanning, and hand-crafted
meshes generated via Python scripts using the Trimesh library,
parameterized by manual measurements of the physical terrain.

Among these acquisition methods, RGB-D cameras leverage
depth information to recover accurate physical scales, effec-
tively minimizing the sim-to-real gap while producing fewer
artifacts than consumer-grade alternatives. It offers the optimal
trade-off between reconstruction quality and efficiency.

While LiDAR scanners provide professional-grade scale
accuracy, they are expensive and tend to generate artifacts
at terrain junctions and fine details. Furthermore, the LiDAR
workflow is labor-intensive and time-consuming, necessitat-
ing multi-pass scanning, SLAM-based mapping, and exten-
sive post-processing (e.g., denoising, smoothing). Consumer
devices like the iPhone, though accessible and fast, yield
inconsistent results that are often prone to significant noise,
such as flying artifacts. Hand-crafted reconstruction proves to
be the least effective for transfer. Although these manually




TABLE V: Comparison of convergence efficiency: Iterations to reach a 97% success rate.

Methods / Terrains Boxes Wedges Nar.l Nar2 Nar3 Trap.l Trap.2 Boston Stakel Stake2 Stake3  Mixl Mix2
Scratch-1 > 25k > 25k 17k 17k > 25k >25k > 25k > 25k > 25k >25k >25k >25k > 25k
TTT-13 0 250 70 70 70 230 170 > 1000 350 400 260 160 270
TTT-1 (Ours) 0 100 20 20 40 240 560 100 200 100 60 120

TABLE VI: Comparison of different test-time training strate-
gies: Iterations to reach 97% success rate.

Methods / Terrains Narrowl Trapezoidl Mix2
Last Layer 120 60 200
Residual 40 70 > 1000
Adapter 40 60 260
Full Fine-tuning (Ours) 20 70 120

designed meshes appear ideal to the human eye, they lack the
surface irregularities and geometric noise found in the physical
world. This excessive geometric perfection creates a severe
domain mismatch, leading to poor sim-to-real performance.
To evaluate the impact of reconstruction quality on sim-
to-real transfer, we deployed policies test-time trained on
meshes from different sources into the real world, as shown
in While all policies converged to high success rates
on their own terrain source in simulation, their real-world
performance varied significantly. Hand-crafted terrains consis-
tently failed due to the aforementioned domain mismatch. The
iPhone-based reconstruction succeeds on the simpler Narrowl
terrain but completely fails on Stakel due to excessive artifacts
in the complex multi-stake environment. RGB-D and LiDAR
achieved comparable high success rates. Although LiDAR
slightly outperformed RGB-D on Narrowl due to superior
scale accuracy, its reliance on expensive hardware and high
time costs makes it unsuitable for test-time parkour training.
We evaluate metric accuracy by registering point clouds to
the hand-crafted one with actual scale to compute the absolute
relative scale error. In ours matches the precision of
industrial LIDAR while remaining the fastest. It significantly
outperforms RGB-only baselines like Pi3 (scale-ambiguous)
and MapAnything (inaccurate inferred metric scale), validating
the necessity of RGB-D input to minimize sim-to-real gap.

D. Analysis of Test-Time Training Strategies

We evaluate various test-time training strategies mentioned
in by measuring the number of iterations
required to reach a 97% success rate in simulation. As shown
in Full Fine-Tuning achieves the most robust
performance across the three tested terrains. In contrast, Resid-
uval and Adapter methods require the random initialization
of new network parameters, which introduces sensitivity and
necessitates additional steps for initial convergence. The Last
Layer method restricts the trainable parameter space, thereby
limiting the policy’s adaptability.

While Parameter-Efficient Fine-Tuning (PEFT) methods (in-
cluding Last Layer, Residual, and Adapter) are typically de-
signed to trade off slight performance degradation for reduced
computational costs, this trade-off proves disadvantageous in

our setting. Experimentally, we observe that PEFT methods
consistently underperform compared to Full Fine-Tuning. We
attribute this performance gap to the significant domain shift
between the pre-training and testing terrains. The limited pa-
rameter space of PEFT restricts the model’s capacity to adapt
to such drastic environmental variations, whereas full fine-
tuning retains the full expressivity required for this adaptation.
Furthermore, since the primary computational bottleneck in
our RL pipeline is physical simulation rather than gradient
calculation, PEFT provides negligible savings in wall-clock
time or resources for each iteration. Thus, given that PEFT
degrades performance without offering meaningful efficiency
gains, we adopt full fine-tuning as our standard approach.

E. Convergence Analysis

We evaluate the convergence efficiency of three train-
ing strategies—training from scratch, multi-terrain Test-Time
Training (TTT-13), and terrain-specific TTT (TTT-1) across 13
terrains in simulation. Efficiency is quantified by the number
of iterations required to reach a 97% success rate. As detailed
in training from scratch fails to converge within a
reasonable time (more than 25k iterations) for all terrains.

Generally, TTT-13 exhibits slower convergence compared
to TTT-1. We attribute this to sample dilution: simultaneously
optimizing for 13 terrains reduces the effective number of
samples available for any specific terrain within a training
batch, thereby slowing gradient updates for distinct geome-
tries. However, Trapezoid2 presents a notable exception where
TTT-13 converges faster than TTT-1 (170 vs. 240 iterations).
We hypothesize that this terrain shares geometric similarities
with the Narrow Beams. Thus, Multi-terrain TTT likely ben-
efits from positive transfer, leveraging features learned from
the Narrow Beams to accelerate adaptation on Trapezoid?.

V. CONCLUSION

In this paper, we introduce TTT-Parkour, a framework sig-
nificantly enhancing the robot’s ability to traverse challenging
terrains. We establish a two-stage pre-training and test-time
training paradigm, alongside a rapid, high-fidelity geometry
reconstruction pipeline. Our experiments demonstrate that by
performing test-time training on accurately reconstructed ter-
rains, a humanoid robot can master agile and robust parkour on
extremely difficult terrains within minutes, including wedges,
stakes, boxes, trapezoids, and narrow beams.

Despite these advancements, limitations remain regarding
deployment efficiency and task diversity. First, the current
10-minute adaptation process serves as a proof-of-concept.
It is still too long for industrial applications and relies on
manual terrain capturing. Future work will explore generating



local terrain meshes directly from a single robot-centric image,
while leveraging improved computational hardware and phys-
ical simulators to reduce training time to seconds. Second, our
framework relies on static geometric reconstruction, neglecting
physical properties such as friction, mass, and compliance.
Future work will explore inferring these dynamic parameters
to model terrain instability, creating interactive simulations that
further minimize the sim-to-real gap.
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APPENDIX
A. Reward Formulation

We use the same rewards for both pre-training and test-
time training. The reward function is designed to encourage
velocity tracking while enforcing physical safety. It consists
of four components: task reward, regularization reward, safety
reward, and AMP style reward. The detailed definition of each
term, along with its corresponding weight and key parameters,

is provided in
B. Geometric Specifications of Real-World Terrains

We present the key dimensions of the terrains used in our
real-world experiments, as shown in [Figure 8| |Figure 9 and

In the figure, the red point denotes the starting

platform pg4.-¢, and the blue point indicates the goal platform
Dend- Several terrains feature extremely sparse or narrow
geometries, posing significant challenges for the robot to
secure stable footholds.

TABLE VII: Detailed specification of reward terms, weights, and mathematical formulations.

Reward Term Weight Mathematical Formulation

Task Reward

Linear Vel Tracking (vgy) 2.0 exp(—||vi, — Vayl?2/0.5%)

Angular Vel Tracking (w>) 0.1 exp(—(wk — wz)2/0.52)

Heading Error -1.0 |w?|

Don’t Wait —0.5 I(vy > 0.3) - (I(ve < 0.15) 4 I(ve < 0) + I(ve < —0.15))
Is Alive 3.0 +1

Stand Still —03  (la — Adefaulli —4.0) - I(|v*]| < 0.15) - I(jw| < 0.15)
Regularization Reward

Edge Penetration ~1.0 PLydall - (vill + €

Feet Air Time 0.5 ming (tphase,r) - 1Q° ¢y = 1) - I(J|v*|| > 0.15)
Feet Slide —-04 2o p Ivay, £l - Ies)

Joint Deviation (Hip) -0.5 Zjemps(qj — Gj,default)?

Base Ang Vel (XY) (L2) —-0.05 lwzy |2

Joint Torques (L2) —1.5e-7  ||Tiegsll?

Joint Acc (L2) —1.25e-7  ||g)|?

Joint Vel (L2) —1.0e-4  |lqg?

Action Rate (L2) —0.005 |lar —a;—1]?

Flat Orientation -3.0 I gg'{fj 12

Pelvis Orientation -3.0 ||g§;0j’pewis 12

Feet Orientation -0.4 > ||g5;‘j}|| -I(cy)

Feet Height Error -0.1 >y 2oy clip(hy — hterr,p — 0.035,0,0.3) - I(cy)
Feet Distance 1.0 exp(—max(0,0.12 — |y — y&[)/0.05) — 1
Energy Consumption —5.0e-5 Zj(rjqj/kj)2

Freeze Upper Body —0.004  [|qupper — qiShau |,

Safety Reward

Joint Pos Limits -1.0 >2;(max(0, g; — ¢j,maz) + max(0, gj,min — ¢;))
Joint Vel Limits -1.0 >2; max(0, 45| — 0.9¢;,max)

Torque Limits —0.01 >, max(0,|7;| — 0.87),maz)?

Undesired Contacts -1.0 I(count(collisiony, gy feet) > 0)

AMP Reward

AMP Style 0.25 max [0,1 — 0.25(D(S¢) — 1)?]
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Fig. 9: Detailed dimensions of the real-world terrains.
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Fig. 10: Detailed dimensions of the real-world terrains.
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